


Packet Filtering

- Network devices such as router can filter traffic based on some well-defined rules
- This is often used to implement firewalls
- Traffic can be filtered based on source/destination IP addresses and port numbers, protocol type, connection state, ...
- Packet filtering is also used to implement Network Address Translation (NAT)

Netfilter

- Overall name for the project that houses all firewalling functions in Linux
- Also name of the framework for connecting (hooking) functions to different stages
 of the Linux networking stack
- Provides tools for configuring firewalls:
 - nftables (replaced iptables)
 - o firewalld

Netfilter Concepts

Netfilter: Rules

- As packets are processed by the kernel, there are opportunities to apply rules to the packet
- Components of a rule:
 - Criteria expression

e.g.:

- all traffic leaving from or going to 10.0.16.0/24
- all UDP packets
- Action statement
 - e.g.: drop, accept, count

Netfilter: Chains

- Chains are sets of rules attached to a particular point in the processing of a packet
- There are multiple points in the processing of a packet where rules can be executed. These points are called "hooks"
- Rules within a chain are evaluated by priority until one matches

Netfilter: Hooks

There are 5 default chains/hooks for IPv4 and IPv6 datagrams

Chain	Allows you to process packets
FORWARD	that flow through a gateway computer, coming in one interface and going right back out another
INPUT	just before they are delivered to a local process
OUTPUT	just after they are generated by a local process
POSTROUTING	just before they leave the network interface
PREROUTING	just as they arrive from a network interface

Netfilter: Packet flow through hooks

Netfilter: Tables

- There are types of packets that can be handled
- Each type is associated with a collection of valid hooks that can be applied
- Tables are groupings of chains with associated valid hooks that apply to a particular type of packets

Netfilter: Tables

Туре	Description
ip	IPv4 datagrams
ip6	IPv6 datagrams
inet	IPv4 and IPv6 datagrams
arp	ARP traffic (i.e. Layer 2 traffic)
bridge	Traffic traversing bridges
netdev	Sees all traffic arriving on network device

Netfilter: Common matches

- iifname: input interface name
- oifname: output interface name
- ether daddr: Ethernet destination address
- ether saddr: Ethernet source address
- ip daddr: IPv4 destination address
- ip saddr: IPv4 source address
- ip proto: IPv4 contained protocol

- tcp sport: tcp source port
- tcp dport: tcp destination port
- udp sport: udp source port
- udp dport: udp destination port
- ct state: the state of the connection (established, related, new, untracked)
- ct direction: the direction of the connection (original, reply)

Example 1: /etc/sysconfig/nftables.conf

```
#!/usr/sbin/nft -f
flush ruleset
table ip filter {
    chain input {
        type filter hook input priority 0;
        policy drop;
        iifname "lo" counter accept
        iifname "eth0" tcp dport ssh counter accept
        iifname "eth0" ip protocol {icmp,dns} counter accept
        iifname "eth1" ip saddr 10.0.15.0/24 counter accept
        iifname "eth1" ip daddr 255.255.255.255 udp sport 68 udp dport 67 counter accept
        ct state related, established counter accept
    chain forward {
        type filter hook forward priority 0;
        policy drop;
        iifname "eth1" ip saddr 10.0.15.0/24 counter accept
        iifname "eth0" ip daddr 10.0.15.0/24 tcp dport 22 counter accept
        iifname "eth0" ip protocol icmp ip daddr 10.0.15.0/24 counter accept
        ct state related, established counter accept
    chain output {
        type filter hook output priority 0;
        policy accept;
```

Example 2: /etc/sysconfig/nftables.conf

```
#!/usr/sbin/nft -f
flush ruleset
table ip nat {
    chain prerouting {
        ##### Port Forwarding ######
        type nat hook prerouting priority -100;
        iifname "eth0" tcp dport 8080 dnat 192.168.10.100:80
    chain postrouting {
        ##### Address translation #######
        type nat hook postrouting priority 100;
        oifname "eth0" masquerade
```

Reading List

• DNS (Read up to 10.1.2 nslookup and dig)